
Distributed versioning for everyone

Distributed versioning for everyone

Nicolas Pouillard

Nicolas.Pouillard@inria.fr

March 20, 2008

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 1 / 48



Distributed versioning for everyone

Introduction

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 2 / 48



Distributed versioning for everyone

Introduction

SCM: “Source Code Manager”

Keeps track of changes to source code so you can track
down bugs and work collaboratively.
Most famous example: CVS
Numerous acronyms: RCS, SCM, VCS
DSCM: Distributed Source Code Manager

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 3 / 48



Distributed versioning for everyone

Introduction

Purpose

What’s the purpose of this presentation
Show the importance of the distributed feature
Enrich your toolbox with a DSCM
Exorcize rumors about darcs
Show how DSCM are adapted for personal use

What’s not the purpose of it
A flame against other DSCMs
A precise darcs tutorial
A real explanation of the Theory of patches

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 4 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 5 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

Distributed rather than centralized

Centralized

Examples: CVS, Subversion,
Perforce

Distributed

Examples: darcs, Git, Bitkeeper,
monotone, arch

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 6 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

Principles

Unify Repositories and Working copies
Working copies with full history
Repositories with local changes

Users record/commit in a local branch

Local branches can be then merged with remote ones
Branching/Merging is then forced to work

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 7 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

Local branches

Branching in a centralized system is morally flawed
People use branches only when they must
Branches are public (not discreet)
That’s considered as an advanced usage

Distributed systems make them easy

Offline commit (no need to be connected)
Try out an idea (cheap and discreet)
Polish your work / amend a patch
Publish with a delay (e.g. end of the work-day)

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 8 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

DSCM are often lighter

No server to setup
Make a repository is as easy as ”darcs initialize”
There is no need to ”wait for” a center
No commit rights management needed

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 9 / 48



Distributed versioning for everyone

Principles of Distributed Versioning

DSCM for open source projects

Collaborating to an open source project
Local branches is a ”must have”
Help to publish only clean and working changes
Send your patches under your name

Work with user contributions
Maintain an auto-gratification principle
No need for commit rights (was really a pain)
Commutation is essential
Delaying user contributions if needed

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 10 / 48



Distributed versioning for everyone

Darcs is one of them

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 11 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 12 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

Why focusing on one of them

Treat each system in details is too long
Abstract over DSCM would be too obscure
Darcs is conceptually simple
Darcs is certainly the smarter of them

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 13 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

Ideas behind darcs

Distributed
A simple “egalitarian” distributed model
“Cherry picking” of changes
Avoidance of “merge points” (no merge history)

Interactive
Efficient and easy to learn
Improved work flow (e.g. partial records, code review, ...)

Smart
Based on a unique algebra of patches
Spontaneous branches
Commutation of changes

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 14 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

Change-based rather than version-based

Version-based

D

A B C

D E

CB

A B C

A

D E

A B C

Examples: Git, Bitkeeper,
Monotone, CVS, Subversion

Change-based

A

E

B

A

AA

D

Examples: darcs

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 15 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

Darcs terminology

A change is a logical entity
A patch is a description of a change
The state of a repository is defined by its set of changes
A set of changes is stored as a sequence of patches

Notation
A change is represented as a capital letter: A

A patch is represented by a capital letter with possibly
primes and/or a subscript: A, A′, A1

Sometimes the state (or context) before and after a patch
is represented by lowercase superscripts: oAa

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 16 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

The state of a repository is defined
by a set of changes.

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 17 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs overview

The repository is represented by a
sequence of patches.

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 18 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 19 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

Some primitive patches

addfile f : Create the empty file f

rmdir d: Remove the empty directory d

move x y: Move/rename the file/directory x into y

hunk: Change the contents of a file
hunk "foo.txt" 42
- the old lines has been
- removed.
+ and replaced by this one

However the theory is independent of its primitives

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 20 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

Each patch is invertible

Definition

invert oAa = aA−1o

Property

∀ x . invert (invert x) = x

Examples

invert (addfile f) = rmfile f

invert (move x y) = move y x

invert (hunk f line old new) = hunk f line new old
invert (A :> B) = (invert B) :> (invert A)

Consequence: While move is easy, copy hardly make sense

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 21 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

Independent changes ⇒ commuting patches

oAaBb ↔ oBc
1A

b
1

Examples
Hunks on different files trivially commute
Hunks commute with moves
Hunks on different parts of a file commute (output patches
have different line numbers)

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 22 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

Illustrated naive merging...

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 23 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs Theory of patches

A D ECB F

GA DCB

E F

H

A DCB F-1 E-1 G H

E FA DCB E'-1G' HF-1

E FA DCB E'-1G'' HF'-1

E FA DCB E''-1G'' H'F'-1

E FA DCB E''-1G'' H'' F''-1

E FA DCB G'' H''

E-1G ↔ G'E'-1

F-1G' ↔ G''F'-1

E'-1H ↔ H'E''-¹

F'-1H' ↔ H''F''-1

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 24 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 25 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Darcs for small projects

A research paper
A prototype implementation
A small module/library
Configuration files
Personal web page
More to imagine...

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 26 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

The bare minimum

initialize Initialize a new source tree as a darcs repository
add Add one or more new files or directories
record Save local changes as a patch
mv Move/rename one or more files or directories
whatsnew Display local/unrecorded changes

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 27 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Handy operations

revert Revert to the recorded version (not always doable)
unrevert Undo last revert (unless if changes after the revert)
rollback Record a new patch reversing some changes

revert ; unrevert ≈ id

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 28 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Overriding unpublished changes

amend-record Replace a patch with a better version
unrecord Remove patches wo/ changing the working copy
obliterate Delete selected patches from the repository

amend-record ≈ unrecord ; record

obliterate ≈ unrecord ; revert

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 29 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Towards advanced patch types

replace Replace a token with a new value for that token

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 30 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working alone

Looking in the past

changes Give a summary of the repository history
annotate Display which patch last modified something
diff Create a diff between versions of the repository
dist Create a distribution tarball
trackdown Locate the most recent version lacking an error
show Show information which is stored by darcs

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 31 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 32 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

Moving patches around

pull Apply patches from another repository to this one
push Apply patches from this repository to another one
get Create a local copy of another repository
put Make a copy of the repository
send Send (by email) a bundle of one or more patches
apply Apply patches (from an email) to the repository

get src dst ≈ initialize src ; cd src && pull dst
put dst ≈ initialize dst ; push dst
push dst ≈ send dst ; cd dst && apply

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 33 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

Branching and merging

Branching is as easy as copying all patches

$ darcs get foo-stable foo-with-feature-A

Merging is as easy as {pull,push}ing things

$ cd foo-with-feature-A
$ darcs pull ../foo-stable

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 34 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

Tagging your repository (darcs tag)

A ”tag” patch is:
A change with no effect
Transitively depends on all patches
Really depends only on non tagged patches

Tagging quite often is a good practice

Tag (some/only) versions that pass all tests
Tag pre-releases and releases

Drawback of tagging

Freeze commutations (patches under a tag cannot cross the tag)

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 35 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

darcs + tagging like crazy ≈ git

$ git commit = darcs record ; darcs tag -m <SHA1>

Enforce the history
Enforce the order of patches
Loose commutativity (manually hacked with git rebase)

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 36 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs branching, merging, tagging

Fancy features

Take the union: pull another repository
Extract a sub part: pull interactively only what’s needed

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 37 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working with others

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 38 / 48



Distributed versioning for everyone

Darcs is one of them

Darcs for working with others

Working with others

Just replace pathnames by URLs (http, ssh)
Use send/apply for email based contributions

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 39 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them
Darcs overview
Darcs Theory of patches
Darcs for working alone
Darcs branching, merging, tagging
Darcs for working with others
Conflicts and concerns

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 40 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

When conflicts happen

Two patches conflicts

they are parallel patches (A ∨ B)
they don’t commute (A B−1 = B′ A′−1)

Conflict example

hunk "foo.txt" 42
- # TODO
+ # FIXED

hunk "foo.txt" 42
- # TODO
+ # DONE

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 41 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

Resolving conflicts

When two patches conflicts one add a third one
By depending on the conflicting patches it tells what to do
Resolutions patches should be shared as much as possible

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 42 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

Avoiding conflicts

Typical DVCS usage

Recipe
Pull often
Amend local patches to
resolve conflicts
Push/send clean patches

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 43 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

Is darcs slow?

Performances are due to its algorithms not its
implementation
Darcs algorithms provide more power/flexibility
Completely usable for day to day commands
Can be really slow on hard requests
Darcs2 has made great progress
Darcs2 reports progress to the user
Darcs2 handles the conflict resolution problem

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 44 / 48



Distributed versioning for everyone

Darcs is one of them

Conflicts and concerns

Are DSCM slow or greedy?

Full history means bigger/slower copies/gets
Hard links in the repository
More network friendly than CVS/SVN
Darcs2 partial repositories could help

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 45 / 48



Distributed versioning for everyone

Conclusion

Outline

1 Introduction

2 Principles of Distributed Versioning

3 Darcs is one of them

4 Conclusion

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 46 / 48



Distributed versioning for everyone

Conclusion

Conclusion and questions

So, convinced?

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 47 / 48



Distributed versioning for everyone

Conclusion

Resources

”The Monad Reader”, issue 9 by Jason Dagit
”Implementing the darcs patch formalism ...and verifying
it” by David Roundy
The darcs website http://darcs.net

The darcs help

Nicolas Pouillard Distributed versioning for everyoneMarch 20, 2008 48 / 48


	Introduction
	Principles of Distributed Versioning
	Darcs is one of them
	Darcs overview
	Darcs Theory of patches
	Darcs for working alone
	Darcs branching, merging, tagging
	Darcs for working with others
	Conflicts and concerns

	Conclusion

